

Immunoglobuline A (IGA) — Metodo Immunoturbidimetrico

IVD

CE

Per sistemi Konelab® - Indiko®

Istruzioni per l'uso (IFU)

INFORMAZIONI PER L'ORDINE

Formato	Codice	Composizione
Kit 2 x 40 mL – 2 x 6 ml	REF B78182264	n°2 flaconi x 40 mL R.A n°2 flaconi x 6 mL R.B n°1 flacone x 60 mL R.C*

*nel caso di utilizzo su strumento Indiko trasferire il contenuto nell'apposito flacone presente nella confezione

DESTINAZIONE D'USO

Test diagnostico Immunoturbidimetrico per la determinazione quantitativa delle Immunoglobuline A nel siero e plasma umano. Tutti i risultati devono essere interpretati in relazione al contesto clinico. SOLO PER USO PROFESSIONALE.

SIGNIFICATO CLINICO

Le immunoglobuline sono la principale difesa dell'organismo contro le infezioni promuovendo la fagocitosi. Le Immunoglobuline A (IgA) sono presenti localmente nel tratto respiratorio, nel tratto gastrointestinale, negli occhi, nel tratto urogenitale e giocano un ruolo importante nella protezione contro molte infezioni virali e batteriche.

Le IgA sono un dimero resistente alla degradazione proteolitica e sono più resistenti alla denaturazione che subiscono gli anticorpi sierici a basso pH. Valori di IgA superiori alla media sono riscontrati nei mielomi IgA.

Valori di IgA inferiori alla media sono riscontrati nelle agammaglobulinemie, nelle ipogammaglobulinemie transitorie, nelle disgammaglobulinemie, nelle enteropatie proteino-dipendenti e nella atassia telangiectasia o sindrome di Louis-Bar.

PRINCIPIO DEL METODO

Metodo Immunoturbidimetrico.

Le IgA contenute nel campione in esame reagiscono con gli anticorpi specifici formando degli immunocomplessi, i quali provocano una torbidità, rivelata fotometricamente, proporzionale alla concentrazione di IgA nel campione. L'analisi quantitativa è ottenuta per interpolazione del dato fotometrico con quelli ottenuti con campioni a concentrazione nota di IgA.

Conservazione e stabilità

= Temperatura di conservazione 2-8 °C

Conservati a 2-8°C, evitando la luce diretta, i reattivi sono stabili fino alla data di scadenza riportata sulla etichetta. Non congelare.

Una loro leggera variazione nella composizione, da lotto a lotto, non influisce sui risultati del test.

Concentrazione

Reagente A				
		Conc.	U.M.	
Tampone Plasma Proteine	TRIS	0,05	mol/L	
	PEG	5	%	
	NaN₃	< 0,1	%	
Reagente B				
IGA Antisiero di capra	NaN₃	< 0,1	%	
Reagente C				
Diluente Campioni	PBS	0,015	mol/L	
•	NaN ₃	< 0.1	%	

Materiali inclusi nel kit

Reagente come descritto

Materiali necessari non inclusi nel kit.

Calibratori e controlli

PRECAUZIONI e AVVERTENZE

- Lo smaltimento dei reagenti e dei materiali di scarto deve avvenire in accordo con le disposizioni comunitarie in materia di rifiuti o con le disposizioni nazionali o regionali vigenti.
- 2. I reagenti possono contenere componenti non attivi quali conservanti e detergenti. La concentrazione totale di tali componenti è inferiore ai limiti riportati nel Regolamento 1272/2008 CE e successive modifiche e integrazioni.
- Si raccomanda di maneggiare il reagente secondo le regole della buona pratica di laboratorio e di utilizzare adeguati dispositivi di protezione individuale.
- 4. Non utilizzare il reattivo se risulta visibilmente degradato (es. presenza di corpuscoli).
- Tutti i campioni umani devono essere manipolati ed eliminati come materiali potenzialmente infettivi.
- Il kit deve essere utilizzato solo da personale tecnico qualificato e adeguatamente formato.
- 7. Le diagnosi sono effettuate esclusivamente da personale autorizzato e qualificato.
- Rispettare le direttive nazionali in materia di sicurezza sul lavoro e garanzia della qualità.
- 9. Utilizzare attrezzature conformi alle norme vigenti.

Segnalazione di incidenti gravi

Nel caso si verifichi un incidente grave in relazione all'utilizzo del dispositivo si prega di informare il produttore (tramite il proprio distributore) e l'autorità competente dello stato membro dell'Unione Europea in cui si è verificato l'incidente. Per altre giurisdizioni, le segnalazioni devono essere effettuate in conformità con i requisiti normativi. La segnalazione di incidenti gravi aiuta a fornire maggiori informazioni relativamente alla sicurezza del dispositivo medico diagnostico.

PREPARAZIONE DEL REAGENTE

I reagenti sono liquidi pronti all'uso. Dopo l'apertura i reagenti sono stabili fino a data di scadenza se mantenuti nelle condizioni indicate in "Conservazione e stabilità".

PROCEDIMENTO

Controllo Qualità

Utilizzare i sieri di controllo SCLAVO Diagnostics Int.: Controllo Proteine Specifiche Basso REF B47182064 e Alto REF B47182065 almeno una volta al giorno. Eseguire l'analisi dei controlli anche dopo ogni calibrazione.

I valori ottenuti devono essere contenuti entro il range di accettabilità.

TECNICA ANALITICA PER USO SU SISTEMI KONELAB® - INDIKO®

Per le procedure automatiche consultare il manuale d'uso e le note applicative dell'analizzatore Konelab® - Indiko®. Tutte le applicazioni non esplicitamente approvate da Sclavo Diagnostics non possono essere garantite in termini di prestazioni e dovranno pertanto essere valutate dall'utilizzatore.

Calibrazione

Per la calibrazione utilizzare il kit "Calibratore singolo livello Proteine Specifiche" Sclavo Codice B47182273, come da metodica applicativa serie Konelab® - Indiko®.

Tracciabilità

Il valore di IGA è stato assegnato secondo IRMM utilizzando il materiale di riferimento ERM®-DA470k/IFCC.

CAMPIONE

Tipo di campione e conservazione

Si può utilizzare siero o plasma ottenuto con la normale tecnica medica. Non è richiesta alcuna preparazione speciale del paziente.

Il metodo analitico richiede prediluizione del campione 1:10 prima dell'analisi.

I campioni fortemente lipemici, o che comunque presentano una rilevante torbidità o precipitati, devono essere chiarificati per centrifugazione (10 min. a 15.000xg), prima dell'analisi.

Calcolo dei risultati su sistemi Konelab® - Indiko®

I risultati vengono calcolati automaticamente dall'analizzatore utilizzando la curva di calibrazione. L'analizzatore esegue automaticamente diluizioni scalari da uno standard primario secondo quanto impostato in metodica. La curva di calibrazione viene ottenuta interpolando i valori ottenuti con un appropriato algoritmo di calcolo.

INTERVALLI DI RIFERIMENTO

 $\begin{array}{ll} \text{L'intervallo di riferimento va da (g/L):} \\ \text{Neonato (> 4 giorni)} & 0.0-0.02 \\ \text{Adulto (20-60 anni)} & 0.7-4.0 \\ \text{Adulto (> 60 anni)} & 0.9-4.1 \\ \end{array}$

Dato che il sesso, l'età, la collocazione geografica ed altri fattori, possono influire sui valori normali della popolazione, ogni laboratorio dovrebbe determinare, per questo test, i valori normali medi e patologici sulla popolazione del proprio bacino d'utenza.

CARATTERISTICHE / PRESTAZIONI

Intervallo analitico – Eccesso di Antigene

Prove della risposta analitica sono state effettuate analizzando un campione fortemente positivo e le sue diluizioni scalari in salina. Il metodo garantisce una corretta misura del dato nell'intervallo compreso tra la concentrazione minima rilevabile e la concentrazione massima del calibratore.

Il presente metodo non mostra Eccesso di Antigene almeno fino a 67,60 g/L.

Accuratezza

L'Accuratezza dei risultati analitici è stata determinata in accordo con il protocollo CLSI EP15-A2, analizzando sieri di controllo commerciali. I dati ottenuti sono riportati nella tabella successiva (intervallo di confidenza 95%).

Livello Replicati		Media	DS	CV%
Basso	25	1,478	0,0462	3,1
Alto	25	4,396	0,1344	3,1

Immunoglobuline A (IGA) — Metodo Immunoturbidimetrico

IVD

CE

Per sistemi Konelab® - Indiko® Istruzioni per l'uso (IFU)

Specificità

Il metodo è specifico al 100% le Immunoglobuline A umane.

Interferenze

È stata testata l'influenza, sulla risposta analitica, fino alle concentrazioni sotto riportate: Bilirubina 50 mg/dL, Acido ascorbico 50 mg/dL, EDTA 10 mM, Emoglobina 500 mg/dL, Sodio citrato 1000 mg/dL, Eparina sodica 40 mg/mL, Trigliceridi 2%, fattore Reumatoide 2000 IU/ml.

Non sono state riscontrate interferenze apprezzabili, e le variazioni ottenute erano all'interno della riproducibilità del dato analitico. Non sono state testate concentrazioni superiori.

Comunque, data la grande eterogeneità delle sostanze e farmaci potenzialmente interferenti, i risultati di questo test, per scopi diagnostici, devono essere sempre valutati congiuntamente con la storia clinica del paziente, con gli esami clinici e con altri riscontri della visita medica.

Precisione

La Precisione dei risultati analitici è stata determinata in termini di Ripetibilità e Precisione Totale secondo il protocollo CLSI EP15-A2, analizzando sieri di controllo commerciali. I dati ottenuti sono riportati nella tabella successiva (determinazioni intervallo di confidenza 95%).

Precisione nella serie (Within-run precision) – Ripetibilità				
Livello	Replicati	Media (g/L)	DS	CV%
Basso	25	1,478	0,016	1,1
Alto	25	4,396	0,031	0,7
Precisione totale (Within-lab precision)				
Livello	Replicati	Media (g/L)	DS	CV%
Basso	25	1,478	0,050	3,4
Alto	25	4,396	0,147	3,3

Limite di sensibilità

Il limite di Sensibilità è stato misurato analizzando diluizioni scalari di un siero concentrato. La più bassa concentrazione misurabile quantitativamente è 0,16 g/L.

Confronto tra metodi

Il metodo in esame è stato confrontato con altro metodo disponibile commercialmente secondo il protocollo CLSI EP09-A2-IR, analizzando 60 sieri umani con concentrazione compresa tra 1,27 e 4,195 g/L. I dati di correlazione tra i due metodi sono riportati nella tabella sottostante.

Stima
-0,0866
1,008
0,993

Simboli utilizzati in IFU e Packaging			
Dispositivo medico diagnostico in vitro	Fabbricante		
REF Numero di catalogo	i Istruzioni per l'uso		
LOT Numero del lotto	Temperatura di conservazione		
Data di scadenza			

Bibliografia

- Hafner G., Endler Th., Oppitz M., Merten U.P., Töpfer G., Dubois H., Hallstein A., Higer B., And Domke I. (1995); Effects of Standardization with the New International Reference Preparation for Proteins in Human Serum on Method Comparability and Reference Values. Clin Lab. 41, 743-748
- Whicher JT, Wallage M, Fifield R. Use of immunoglobulin heavy- and lightchain measurements compared with existing techniques as a means of typing monoclonal immunoglobulins. Clin Chem. 1987 Oct; 33(10):1771-3.
- Skvaril F, et al. Imbalances of kappa e lambda ratios of immunoglobulins. In: Ritzmanns E, ed Protein Abnormalities. Vol 2. New York: Alan R. Liss Inc. 1982:21-35
- Tillyer CR. The estimation of free light chains of immunoglobulins in biological fluids. Int J Clin Lab Res. 1992;22(3):152-8.
- Tillyer CR. Clinical applications of immunoglobulin free light chain estimations. Int J Clin Lab Res. 1993;23(1):25-9.
- Whicher J.T., Price C.P. And Spencer K. (1983). Immunonephelometric and Immunoturbidimetric Assay for Proteins. Crit. Rev. Clin. Lab. Sci 18(3), 213-260.
- Baudner S, Bienvenu J, Blirup-Jensen S, Carlstroem A, Johnson AM, Milford Ward A, et al.:(1993) The certification of a matrix reference material for immunochemical measurement of 14 human serum proteins, CRM 470. EUR 15243 EN, 1993:1-186;
- Burtis CA, Ashwood ER, Bruns DE (2008) Fundamentals of Clinical Chemistry. Tietz Sixth Edition, Elsevier.
- 9. Dati F, Schumann G, Thomas L, Aguzzi F, Baudner S, Bienvenu J, Blaabjerg O, Blirup-Jensen S, Carlström A, Petersen PH, Johnson AM, Milford-Ward A, Ritchie RF, Svendsen PJ, Whicher J. (1996) Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International Federation of Clinical Chemistry. Community Bureau of Reference of the Commission of the European Communities. College of American Pathologists. Eur J Clin Chem Clin Biochem. 6:517-20
- Clinical Laboratory Standards Institute (CLSI). User Verification of Performance for Precision and Trueness; Approved Guideline – Second Edition. EP15-A2. Vol 25 N. 17
- Clinical Laboratory Standards Institute (CLSI). Evaluation of Precision Performance of Quantitative Measurements Methods; Approved Guideline – Second Edition. EP05-A2. Vol 24 N. 25
- Clinical Laboratory Standards Institute (CLSI). Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline
 – Third Edition. EP09-A3. Vol 33 N. 11

REVISIONE	DATA	MOTIVO DELLA REVISIONE
Rev.F	06/2024	Nuova emissione per adeguamento IVDR
		Regolamento (UE) 2017/746

